تدریس درس اول ریاضی ششم دبستان ، تدریس درس اول ریاضی ششم الگوهای عددی ، فیلم تدریس درس اول ریاضی ششم زهرا حیدری ، آموزش درس اول ریاضی پایه ششم ابتدایی
تدریس درس اول ریاضی ششم دبستان
عدد نویسی و مقایسه اعداد جزو مباحث پایه ای ریاضی دبستان می باشد که در این به خوبی توضیح داده می شود.بخش پذیری نیز بررسی می شود.
طرح درس روزانه ریاضی ششم ابتدایی درس الگوهای عددی و زوج و فرد
نام کتاب درسی: ریاضی مقطع تحصیلی : ششم موضوع درس : الگوهای عددی و زوج و فرد
اهداف :
آشنایی دانش آموز با الگوهای عددی و اعداد زوج و فرد.
۱-دانشآموز بتواند رابطهی بین شماره جمله و تعداد عناصر هر جمله را بیان کند.
۲-دانشآموز از طریق الگو با اعداد زوج و فرد آشنا شود.
۳- دانشآموز بتواند قاعده یا رابطهی کشف شده در الگو را با عبارات فارسی و یا نماد ریاضی مثل مربع،دایره،مثلث و… بیان کند.
۴- دانشآموز با ویژگیهای محاسبات اعداد زوج و فرد آشنا شود.
۱-دانشآموز بتواند چند الگو که فقط شامل اعداد فرد یا فقط اعداد زوج باشد را تهیه کند.
۲-دانشآموز بتواند یک الگوی با قاعده را طراحی کند و چند جملهی تصادفی آن را پیدا کند.
۳- دانشآموز بتواند پس از طراحی الگو روابط جملههای آن را به زبان فارسی بیان کند و با استفاده از نماد ریاضی آن رابطه را نشان دهد.
فیلم تدریس درس اول ریاضی ششم زهرا حیدری
آموزش و حل صفحه 2 ریاضی ششم ابتدایی ( آموزگار زهرا حیدری )
آموزش و حل صفحه 3 ریاضی ششم ابتدایی ( آموزگار زهرا حیدری )
درسنامه آموزشی فصل اول ریاضی کلاس ششم | درس 1: الگوهای عددی با پاسخ
1- جدول زیر نشان دهندهی تعداد دوچرخهها و تعداد چرخهای مورد نیاز برای تولید آنها در یک کارخانهی دوچرخه سازی است. جدول را کامل کنید و به سؤالات پاسخ دهید.
– برای تولید 10 عدد دوچرخه به چند عدد چرخ نیاز است؟ 5×2=10
– 28 عدد چرخ برای تولید چند عدد دوچرخه مورد نیاز است؟ 14 تا زیرا 14×2=28
– آیا امکان دارد برای تولید تعدادی دوچرخه 19 عدد چرخ مورد نیاز باشد؟ چرا؟
خیر زیرا اگر دو تا دو تا بشماریم به عدد 19 نمیرسیم؛ در واقع عدد 19 را نمیتوان به صورت ضرب یک عدد طبیعی در 2 نوشت.
چه رابطهای بین تعداد چرخها و تعداد دوچرخهها وجود دارد؟
2 × تعداد دوچرخهها = تعداد چرخها
اگر تعداد دوچرخهها را با ◻ و تعداد چرخها را با ◯ نمایش دهید، رابطهی بالا را چگونه میتوان نوشت؟
2 × ◻ = ◯
به عددهای …, , , 2,4,6,8,10 اعداد زوج میگویند.
2- با توجّه به الگوی زیر، شکل پنجم را رسم و جدول را کامل کنید.
شکل (1)
شکل (2)
شکل (3)
شکل (4)
شکل (5)
9 | … | 4 | 3 | 2 | 1 | شمارهی شکل |
17 | 7 | 5 | 3 | 1 | تعداد مربّعها | |
(9×2)−1 | (4×2)−1 | (3×2)−1 | (2×2)−1 | (1×2)−1 | رابطهی بین تعداد مربّعها و شمارهی شکلها |
– چندمین شکل با 23 مربّع ساخته میشود؟ دوازدهمین شکل زیرا 12×2−1=23
آیا شکلی با 28 مربّع ساخته میشود؟ چرا؟
خیر زیرا عددی که یک واحد کمتر از آن 28 شود، 29 است و 29 را نمیتوان به صورت ضرب یک عدد طبیعی در عدد 2 نوشت.
با توجّه به الگوی بالا، رابطهی روبهرو را کامل کنید.
1 – ( 2 × شمارهی شکل) = تعداد مربعها
– در رابطهی بالا به جای تعداد مربّعها، ◻ و به جای شمارهی شکل، ◯ قرار دهید و رابطه را بنویسید.
1 – ( 2 × ◯) = ◻
به عددهای …, , , 1,3,5,7,9,11 اعداد فرد میگویند.
1- معلّم از دانش آموزان خواست با رسم الگویی، اعداد زوج را نشان دهند. الگوی چند دانش آموز را در زیر میبینید. شکل بعدی هر الگو را رسم کنید.
محمّد:
شکل (1)
شکل (2)
شکل (3)
شکل (4)
شکل (5)
تعداد چوب کبریتها در الگوی بالا برابر اعداد زوج است.
علی:
ربات در هر بار پرش روی محور، دو واحد به جلو میرود.
حسین:
شکل (1)
شکل (2)
شکل (3)
شکل (4)
شکل (5)
تعداد دایرهها در الگوی بالا برابر اعداد زوج است.
شما نیز الگویی رسم کنید و الگوی خود را با الگوی هم کلاسیهایتان مقایسه کنید.
2- فاطمه و زهرا الگوهای زیر را برای نمایش اعداد فرد رسم کردند. شکل خواسته شده از هر الگو را رسم کنید.
فاطمه:
شکل (1)
شکل (2)
شکل (3)
شکل (4)
شکل (5)
زهرا:
شکل (1)
شکل (2)
شکل (3)
شکل (4)
شکل (5)
شما نیز الگویی رسم کنید و الگوی خود را با الگوی هم کلاسیهایتان مقایسه کنید.
3- در مورد شباهتها و تفاوتهای اعداد زوج و فرد با هم کلاسیهایتان بحث و گفت وگو کنید.
شباھت:
– ھم اعداد زوج و ھم اعداد فرد، دو تا دو تا زیاد میشوند.
– تعداد اعداد فرد و تعداد اعداد زوج بی شمار است.
تفاوت:
– رقم یکان اعداد زوج، زوج است ولی رقم یکان اعداد فرد، فرد است.
– اعداد زوج را میتوان دو تا دو تا بستهبندی کرد ولی اعداد فرد را نمیتوان دو تا دو تا دستهبندی کرد.
هیچ عدد مشترکی بین آنها وجود ندارد.
1- در شکل زیر مسیر انتخاب شده توسّط دو دانش آموز را مشاهده میکنید.
الف) پس از انتخاب یک مسیر، تعداد توپهای داخل تونلها را با هم جمع کنید.
– آیا هم کلاسی دارید که یک مسیر از «تونلهای زوج و فرد» را انتخاب کرده باشد و تعداد توپهایش زوج باشد؟ خیر
– در چه صورتی مجموع توپهای مسیر انتخاب شده، زوج و در چه صورتی فرد است؟
اگر ھر دو تونل زوج یا ھر دو تونل فرد باشند، عدد حاصل زوج است ولی اگر یک تونل فرد و یک تونل زوج باشد، مجموع اعداد فرد است.
ب) جملات زیر را کامل کنید.
– حاصل جمع دو عدد زوج، عددی زوج است.
– حاصل جمع دو عدد فرد، عددی فرد است.
– حاصل جمع دو عدد که یکی از آنها زوج و دیگری فرد است، فرد است.
پ) با توجّه به شکل بالا، به کمک معلّم و هم کلاسیهایتان بازی جدیدی طرّاحی کنید و در کلاس انجام دهید.
2- الگوی زیر از چوب کبریتها تشکیل شده است. جاهای خالی را پر کنید.
شکل (1)
3 : تعداد چوب کبریتها
1×3 : رابطهی بین تعداد چوب کبریتها و شمارهی شکلها
شکل (2)
6 : تعداد چوب کبریتها
2×3 : رابطهی بین تعداد چوب کبریتها و شمارهی شکلها
شکل (3)
9 : تعداد چوب کبریتها
3×3 : رابطهی بین تعداد چوب کبریتها و شمارهی شکلها
شکل (4)
12 : تعداد چوب کبریتها
4×3 : رابطهی بین تعداد چوب کبریتها و شمارهی شکلها
با توجّه به الگوی صفحهی قبل جاهای خالی را پر کنید.
3 × شمارهی شکل = تعداد چوب کبریتها
3 × ◯ = ◻
آیا تعداد چوب کبریتها و شمارهی شکلها با یکدیگر متناسباند؟ چرا؟
بله زیرا در هر شکل، تعداد چوب کبریتها 3 برابر شمارهی شکل است.
به عددهای …, 3,6,9,12,15,18 مضربهای عدد 3 میگویند.
– توضیح دهید که مضربهای عدد 3 چگونه به دست میآیند. عدد 3 را به ترتیب در اعداد طبیعی یعنی 4 ،3 ،2 ،1 و …. ضرب میکنیم.
– چند مضرب دیگر 3 را بنویسید. 30 – 29 – 21 – 15
1- در صف بوفهی مدرسه، رضا نفر چهارم است. اگر تعداد افراد داخل صف عددی زوج و کمتر از 20 باشد، چند نفر میتوانند پس از رضا در صف باشند؟ (سه جواب مختلف بنویسید) روش خود را توضیح دهید.
18 | 16 | 14 | 12 | 10 | 8 | 6 | 4 | تعداد افراد داخل صف |
14 | 12 | 10 | 8 | 6 | 4 | 2 | 0 | تعداد افراد بعد از رضا |
2- با کامل کردن الگوی عددی زیر، مضربهای 5 را بنویسید.
1×5↓5,2×5↓10,3×5↓15,4×5↓20,5×5↓25,6×5↓30
– نهمین مضرب 5، چه عددی است؟ 9×5=45
– 55 چندمین مضرب 5 است؟ مضرب یازدهم زیرا 11×5=55
به عددهای …, 5,10,15,20,25 مضربهای عدد 5 میگویند.
مضربهای 5 را تا 100 بنویسید.
100 – 95 – 90 – 85 – 80 – 75 – 70 – 65 – 60 – 55 – 50 – 45 – 40 – 35 – 30 – 25 – 20 – 15 – 10 – 5
3- عددی کوچکتر از 10 انتخاب کنید و مضربهای آن را بنویسید.
1×7↓7,2×7↓14,3×7↓21,4×7↓28,5×7↓35,6×7↓42
1- در جدول مقابل، خانههای اعداد زوج را رنگ کنید.
– خانههایی که رنگ نشدند چه اعدادی را نشان میدهند؟ اعداد فرد
– رقم یکان اعداد زوج، چه رقمهایی هستند؟ 8 6 4 2 0
– آیا رقم دهگان اعداد زوج، همیشه زوج است؟ خیر مانند 52 که رقم دهگان فرد است.
– آیا رقم دهگان اعداد فرد، همیشه فرد است؟ خیر مانند 45 که رقم دهگان آن زوج است.
– چگونه میتوان زوج یا فرد بودن یک عدد را مشخّص کرد؟ اگر رقم یکان زوج باشد، عدد زوج و اگر رقم یکان فرد باشد، عدد فرد است.
2- در جدولی مانند جدول سؤال 1، اعداد 1 تا 100 را بنویسید و مضربهای 3 و 5 را با رنگ کردن مشخّص کنید.
سؤالی را در مورد این جدول طرح کنید و از دوستانتان بخواهید به آن پاسخ دهند.
3- با توجّه به الگوی زیر، شکل چهارم الگو را رسم و جدول را کامل کنید.
شکل (1)
شکل (2)
شکل (3)
شکل (4)
6 | 5 | 4 | 3 | 2 | 1 | شمارهی شکل |
20 | 17 | 14 | 11 | 8 | 5 | تعداد مربّعها |
(6×3)+2 | (5×3)+2 | (4×3)+2 | (3×3)+2 | (2×3)+2 | (1×3)+2 | رابطهی بین تعداد مربّعها و شمارهی شکلها |
– چه رابطهای بین تعداد مربعّها و شمارهی شکلها وجود دارد؟ پاسخ خود را با پاسخ هم کلاسیهایتان مقایسه کنید.
2 + (3 × شمارهی شکل) – تعداد مربع
– رابطهی خود را با قرار دادن ◻ به جای تعداد مربّعها ◯ و به جای شمارهی شکلها بنویسید.
4- با توجّه به الگوی زیر، شکل چهارم الگو با چند مکعّب ساخته میشود؟
2 + (3 × ◯) – ◻
در هر شکل، به تعداد شمارهی شکل ردیف سه تایی داریم به علاوهی یکی هم تکی داریم. بنابراین در شکل چهارم، 4 ردیف 3 تایی به علاوهی یکی هم تکی داریم؛ یعنی 13 تا
شکل (1)
(1×3)+1=4
شکل (2)
(2×3)+1=7
شکل (3)
(3×3)+1=10
شکل (4)
(4×3)+1=13
– شکل چندم با 25 مکعّب ساخته میشود؟ شکل هشتم زیرا (8×3)+1=25
– رابطهی بین تعداد مکعّبها و شمارهی شکلها را بنویسید.
1+ (3 × شمارهی شکل) – تعداد مربع
5- فاطمه در صف 31 نفرهی مدرسه، نفر وسط است. درستی یا نادرستی هر یک از جملات زیر را با ذکر دلیل مشخّص کنید.
فاطمه نفر وسط هست بنابراین از 30 نفر دیگر، 15 نفر قبل از او و 15 نفر بعد از او هستند. چون 15 نفر قبل از فاطمه هست پس خودش نفر شانزدهم است.
– فاطمه نفر پانزدهم صف است. نادرست
– 15 نفر قبل از فاطمه و 15 نفر بعد از فاطمه در صف هستند. درست
– 15 نفر قبل از فاطمه و 16 نفر بعد از فاطمه در صف هستند. نادرست
– فاطمه نفر شانزدهم صف هست. درست
6- به سؤالات زیر پاسخ دهید.
– 12 مضرب چه اعدادی میتواند باشد؟ 12 ، 6 ، 4 ، 3 ، 2 ، 1
– 15 مضرب چه اعدادی میتواند باشد؟ 15 ، 5 ، 3 ، 1
نکته: هر عددی هم مضرب خودش هست و هم مضرب یک هست.